

BBA-003-001308

Seat No.

B. Sc. (Sem. III) (CBCS) Examination July - 2021

Mathematics: Paper - BSMT - 301 (A) (Theory)
(Old Course) (Linear Algebra, Calculus & Theory of Equations)

Faculty Code: 003 Subject Code: 001308

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

(2) Figures to the right indicate full marks.

- 1 Answer the following questions in short: (1 Marks Each) 20
 - (1) State whether the sentence is true or false: "A matrix has rank zero if and only if it is a zero matrix".
 - (2) Define: Subspace.
 - (3) "A vector containing a zero vector is always Linearly dependent": True or False.
 - (4) $Dim(P_n) =$ where P_n is set of all polynomials of degree $\leq n$.
 - (5) "If $\overline{0}$ is a zero vector and T is a transformation satisfying $T(\overline{0}) \neq \overline{0}$ then T is not a linear transformation": True or False.
 - (6) State Rank-Nulity Theorem.
 - (7) Discuss the convergence : $1 = \frac{1}{2} + \frac{1}{2^2} \frac{1}{2^3} + \dots$
 - (8) "The series $\sum_{i=1}^{n} \frac{1}{n!}$ is divergent": True or False.
 - (9) State: The conditions of convergence for D'Alembert's Ratio Test.
 - (10) Discuss the convergence : $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots$
 - (11) Write the degree of the algebraic equation : $x^2 6x^3 + 8x 4 = 0$
 - (12) A real root of the equation : $x^3 2x 5 = 0$ lies in (a, b) then $a = \underline{\hspace{1cm}}$ and $b = \underline{\hspace{1cm}}$.

- (13) Write the formula to find reciprocal of \sqrt{N} .
- (14) Write the name of any one numerical method to find the derivatives of polynomial.
- (15) The order of convergence in Newton-Raphson method is _____.
- (16) Define: Radius of Curvature.
- (17) What happens to formula of radius of curvature if the tangent at any point is parallel to y-axis?
- (18) Define: Double Point.
- (19) Define: Cusp.
- (20) The radius of curvature of the curve $y = e^x$ at the point where is crosses the *y*-axis is _____.
- 2 (a) Answer the following (any three) (Each Carries two marks):

- 6
- (1) Check whether $\{(2, 2, 3), (2, 1, 3), (1, 0, 1)\}$ is linearly dependent or not.
- (2) If S is non-empty subset of vector space V then show that Sp S is subspace of V.
- (3) Show that $\{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ is a basis of \mathbb{R}^2 .
- (4) Find the Eigen values for $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(a,b) = (3b 2a b).2y.
- (5) Show that $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(x, y, z) = (x^2, y^2, z^2)$ is a linear transformation.
- (6) Write p-series and p-test
- (b) Answer the following (any three) (Each Carries three marks):

9

- (1) Check whether $(0,-1,1) \in Sp \ A$ or not where $A = \{(2,1,0), (-1,0,1), (0,1,2)\}.$
- (2) Let $S: U \to V$ and $T: U \to V$ be any two linear transformations, then show that $(S+T): U \to V, (S+T)(u) = S(u) + T(u)$, for $\forall_u \in U$ is also a linear transformation.
- (3) Let $T: R^3 \to R^3$, be a linear transformation such that T(1,0,0) = (0,0,1), T(0,1,0) = (1,0,0) and T(0,0,1) = (0,1,0) then prove that $T^2 = T^{-1}$ where $T^2 = T^{\circ} T$

- (4) Discuss the convergence : $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$
- (5) Examine the convergence : $\sum \sqrt{n^2+1} \sqrt{n^2-1}$.
- (6) Show that the series $\sum (-1)^n (\sqrt{n^2+1}-n)$ is conditionally convergent.
- (c) Answer the following (any two)
 (Each carries five marks):
 - (1) ${V = (x, y)/x \in R, y > 0}$, for $(a, b), (c, d) \in V$ and $\alpha \in R : (a, b) + (c, d) = (a + c, bd), \alpha(a, b) = (\alpha a, b^a)$ then show that V is vector space.
 - (2) Show that $\{\overline{v}_1, \overline{v}_2, \overline{v}_3, ..., \overline{v}_n\}$ is linearly dependent iff $\exists \overline{v}_k \in V \; ; \; 2 \leq k \leq n \text{ such that } \overline{v}_k \text{ is linear combination of its preceding vectors } \overline{v}_1, \overline{v}_2, \overline{v}_3, ..., \overline{v}_{k-1}.$
 - (3) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, where $\{e_1, e_2, e_3\}$ is standard basis of \mathbb{R}^3 these find \mathbb{T}^{-1} .
 - (4) Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{\left(-3\right)^n \cdot x^n}{\sqrt{n+1}}.$
 - (5) Discuss the convergence : $\sum \frac{(n!)^2}{(2n)!} \cdot x^n$.
- 3 (a) Answer the following (any three)
 (Each Carries two marks):
 (1) Find the radius of curvature for the curve:
 - (1) Find the radius of curvature for the curve : $s = C \log(\sec \psi)$.
 - (2) Find the equation whose root is 1 more than the roots of the equation $x^3 5x^2 + 6x 3 = 0$.

6

5

- (3) Find the radius of curvature for $xy c^2$.
- (4) Show that $y = \log x$ is convex upwards.
- (5) Show that origin is a point of inflection for the curve $y = x^3, x \in R$.
- (6) Find the asymptotes parallel to Y-axis for the curve: $x^2y^2 = a^2(x^2 + y^2)$
- (b) Answer the following (any three) (Each Carries three marks) 9
 - (1) Derive Newton's Formula to find $\sqrt[p]{N}$.
 - (2) Derive Newton's Formula to find radius of curvature at origin for the curve y = f(x).
 - (3) Find radius of curvature at any point (x, y).
 - (4) Find the asymptotes parallel to co-ordinate axes for the curve:

$$x^2y - 3x^2 - 5xy + 6y + 2 = 0$$

- (5) Explain Newton-Raphson's method to find an approximate root of f(x) = 0.
- (6) Show that the radius of curvature of the curve

$$x^{3} + y^{3} = 3axy$$
 at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ is $\frac{3a\sqrt{2}}{16}$.

- (c) Answer the following (any two)
 (Each Carries five marks):
 - (1) Obtain oblique asymptotes for the curve : $y = \frac{x^2 + 2x 1}{x}$
 - (2) Find the radius of curvatures $p(r, \theta)$ for the curve: $r^2 = a^2 \cos^{2\theta}$.
 - (3) Explain False position method to find approximate root of f(x) = 0.
 - (4) Find the singular points for the curve : $x^{3} + y^{3} - 12x - 27y + 70 = 0.$
 - (5) Find all the asymptotes for the curve : $4x^3 3xv^2 v^3 + 2x^2 xv v^2 = 1$